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Abstract:
Gliomas are central nervous system (CNS) cancers that are challenging to treat 
due to their high proliferation and mutation rates. High grade gliomas include 
grade 3 and grade 4 tumors, which characteristically have a poor prognosis 
despite advancements in diagnostic methods and therapeutic options. Advances 
in metabolomics are resulting in more insight as to how cancer modifies the 
metabolism of the cell and surrounding tissue. Hence, this avenue of research 
may also emerge as a way to precisely target metabolites unique to gliomas. These 
biomarkers may provide opportunities for glioma diagnosis, prognosis and future 
therapeutic intervention.
In this review, we harvest the literature that highlights notable biomolecules in high 
grade gliomas and promising therapeutic targets and interventions.
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Introduction
High-grade gliomas (HGGs) include the World Health Organization (WHO) grade 
3 and 4 tumors and consist of astrocytoma (IDH-mutant), oligodendroglioma (IDH-
mutant and 1p/19q-codeleted), glioblastoma (IDH-wildtype), diffuse hemispheric 
glioma (H3 G34-mutant and H3 K27-mutant), among other gliomas (Louis et al., 
2021). The typical treatment plan includes surgical resection and a combination of 
chemotherapy and radiotherapy. Despite that, these tumors tend to recur with poor 
prognosis and limited treatment options.
Metabolomics is the study of endogenous metabolites and low molecular weight 
molecules (LMWM) and their interactions within a biological sample (Nicholson 
and Lindon, 2008; Patti et al., 2012). Metabolomics is a discipline integral to 
advancing scientific understanding and discovery of new, effective clinical 
diagnoses and interventions. The significance of this discipline has appeared in 
how we frame and diagnose cancers. Historically, the WHO has classified and 
diagnosed cancers histogenetically. More recently, in the fifth edition of the WHO 
classification of tumors of the Central Nervous System (WHO CNS5), cancer 
taxonomy and diagnosis are layered and involves an integration of molecular 
features and histology (Louis et al., 2021).
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This review describes recent metabolomic studies that pertain to 
high grade gliomas, spanning metabolic pathways, metabolites, 
therapeutic interventions, and testing methods.

Critical metabolic pathways
In normal mammalian cells, metabolic pathways maintain 
homeostasis and sustain life. However, cancer cells disrupt 
and exploit metabolism to promote abnormal growth, survival, 
and proliferation. The Warburg Effect is a well-documented 
phenomenon that illustrates metabolic dysregulation (Warburg, 
1925; Warburg, 1956). Under typical conditions, glucose is 
oxidized to pyruvate through glycolysis and mitochondrial 
oxidation of pyruvate to acetyl-CoA continues to support energy 
production via the tricarboxylic acid cycle (TCA) and oxidative 
phosphorylation. In the 1920s, Otto Warburg observed that 
cancer cells have increased glucose uptake and produce lactate 
from glucose despite the presence of oxygen and completely 
functioning mitochondria (Warburg, 1925; Warburg, 1956). 
Increased lactate generation noted in the Warburg effect can be 
explained, in part, by the activation of the PI3K/AKT/mTOR 
pathway by mutation in the tumor suppressor, PTEN, and/
or epidermal growth factor (Chakravarti et al., 2004; Choe et 
al., 2003). In GBM, this pathway’s downstream effects include 
increased expression of vascular endothelial growth factor 
(VEGF) and the transcription factor, hypoxia-inducible factor-1a 
(HIF-1a) (Fischer et al., 2005). VEGF is a key mediator in GBM 
angiogenesis and is stimulated by hypoxia, which is prevalent 
in malignant neoplasms such as GBM. Hypoxia stabilizes HIF-
1a which in turn increases expression of hexokinase-2 (HK2)
in GBM cells that then promotes glycolysis and activation of 
factors that stimulate the transport of lactate to the extracellular 
space, and tumor growth and invasion (Wolf et al., 2011).
Aberrant metabolic behavior in cancer cells is also evident 
in glutaminolysis, the pentose phosphate pathway, and fatty 
oxidation. The TCA cycle occurs in the mitochondrial matrix and 
yields coenzymes NADH, GTP and FADH2, and intermediates 
including citrate, isocitrate, α-ketoglutarate (α-KG), succinyl-
CoA, succinate, fumarate, malate and oxaloacetate. Cancer cells 
exploite enzymes and intermediates of the TCA cycle to promote 
tumorigenesis (Chen and Russo, 2012; Eng et al., 2003; Pavlova 
and Thompson, 2016). A well-established example in gliomas 
is isocitrate dehydrogenase (IDH) (Yan et al., 2009), which 
converts isocitrate to α-KG, mutations have also been found in 
succinate dehydrogenase (SDH) and fumarate hydratase (FH) in 
other conditions including phaeochromocytoma, paraganglioma, 
and renal cell carcinoma (Eng et al., 2003). 
The TCA cycle can also operate if pertinent amino acids 
are available for metabolism. Through a series of steps, 
glutaminolysis converts glutamine to α-KG and thereby 
replenishes the TCA cycle. Cancer cells have been found to 
leverage glutaminolys is to increase production of metabolites 
such as α-KG and aspartate to support cell growth and division 
(Chen and Russo, 2012; Eagle, 1955; Wang et al., 2020).
The pentose phosphate pathway normally functions to generate 
NADPH and pentose sugars from glucose-6-phosphate (G6P). 
Not only is this pathway important for normal cells, but it is 
also pivotal in cancer cells since it provides building blocks for 
nucleic acid synthesis and protection from oxidative damage 

(Jin and Zhou, 2019; Patra and Hay, 2014).
Fatty acid oxidation occurs in multiple organelle types including 
the mitochondria, peroxisome, and endoplasmic reticulum 
(Talley and Mohiuddin, 2022). This process generates energy 
under stress and is linked to cellular respiration and proliferation 
in malignant gliomas (Lin et al., 2017).
Evidence of cancer’s unique energy metabolism and the role 
of the mitochondria have led some in the scientific community 
to consider cancer a metabolic disease (Erb et al., 2008; Khan 
et al., 2021; Kwon et al., 2015; Seyfried and Shelton, 2010; 
Spratlin et al., 2009).

Glucose
Glucose is the most common energy source for mammalian 
cells; it can be converted to pyruvate through glycolysis and 
produced via gluconeogenesis. Glucose uptake and usage is 
markedly increased in cancer cells (Bao et al., 2019; Ishikawa 
et al., 1993; Warburg, 1925; Warburg, 1956). Several studies 
indicate that elevated glucose promotes GBM cell growth, and 
hyperglycemia is a condition associated with worse outcomes 
(Bao et al., 2019; Derr et al., 2009; Ishikawa et al., 1993; Tieu 
et al., 2015).

Lactate 
Lactate (2-hydroxypropanoic acid) is produced by lactate 
dehydrogenase-A (LDH-A) in hypoxic conditions. Despite 
ample oxygen levels, cancer cells preferentially produce lactate 
and rely on substrate level phosphorylation for their energy 
(Seyfried and Shelton, 2010). Studies have shown that lactate 
has multifactorial roles in tumorigenesis, functioning as a 
signaling molecule for tumor angiogenesis and contributing to 
tumor inflammation and growth by attracting macrophages that 
then secrete cytokines such as IL-23/IL-17 and growth factors 
(Shime et al., 2008; Sonveaux et al., 2012; Végran et al., 2011). 
Amongst patients with high grade gliomas undergoing tumor 
resection, pretreatment serum lactate was found to be a strong 
prognostic biomarker (Mariappan et al., 2015; Shih et al., 2017). 
Overexpression of LDH-A has also been reported in GBM 
cell lines and is associated with increased glycolysis, growth, 
immune evasion, and decreased cell death (Kahlon et al., 2016; 
Li et al., 2016).

Isocitrate Dehydrogenase, D-2-hydroxyglutarate 
IDH catalyzes the oxidative decarboxylation of isocitrate to 
α-KG with the reduction of NADP+ to NADPH. IDH1 and 2 are 
homologous enzymes that differ in that IDH1 is localized to the 
cytosol while IDH2 resides in the mitochondrial matrix.
IDH1 mutations at R132 have been associated with astrocytomas, 
GBM, and oligodendrogliomas, and IDH2 mutations at R172 
have been linked with gliomas (Dang et al., 2010; Yan et 
al., 2009).IDH1/2 have been linked to enhanced reductive 
carboxylation in hypoxia for de novo lipogenesis (Metallo et al., 
2011). In a study of IDH1-mutant (IDH1-mt) gliomas, one study 
found decreased triglycerides and sphingolipids and elevated 
pyruvate entering the TCA cycle in IDH1-mt gliomas compared 
to IDH-wt (Zhou et al., 2019). As a prognostic marker, several 
studies have found that IDH1/2 mutations are linked to prolonged 
patient survival and therapeutic response amongst patients with 
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gliomas and GBM (Cairncross et al., 2014; Chen et al., 2016; 
Parsons et al., 2008; Yan et al., 2009).
While it is well established that many patients with glioma 
experience at least one seizure in the course of their illness 
(Moots et al., 1995; van Breemen et al., 2007), epileptogenicity 
remains poorly understood. Recent studies have pointed to 
IDH1/2-mt cancers as vulnerable to higher seizure incidence 
relative to IDH-wt (Chen et al., 2017; Zhong et al., 2015). This 
may be due to the production of D-2-hydroxyglutarate (D2HG) 
via NADPH-dependent reduction of α-KG in IDH1/2-mt 
cancers (Dang et al., 2010; Lee et al., 2019). α-KG is believed to 
have anti-epileptic properties (Yamamoto and Mohanan, 2003)
and D2HG competitively inhibits α-KG dependent enzymes (Xu 
et al., 2011) which may ultimately contribute to carcinogenesis 
and seizures. Additionally, D2HG structurally resembles the 
excitatory neurotransmitter, glutamate, and D2HG in IDH1-mt 
gliomas have been associated with seizure incidence due to their 
agonistic actionon the NMDA receptor (Chen et al., 2017).

Glutamate
Glutamate is a CNS excitatory neurotransmitter. Studies indicate 
that gliomas release glutamate and this has been implicated in 
tumor expansion (Takano et al., 2001), cellular edema (Savaskan 
et al., 2008), and tumor associated excitotoxicity and epilepsy 
(Buckingham and Robel, 2013; de Groot and Sontheimer, 2011; 
Yuen et al., 2012). Interestingly, Nakae et al. found that while 
higher glutamate concentration was in IDH-wt glioma relative 
to IDH-mt, glutamate was not associated with high preoperative 
seizure frequency (Nakae et al., 2021). Rather, levels of total 
N-acetyl-L-aspartate were found to be statistically correlated 
and were independent predicators of preoperative seizures 
(Nakae et al., 2021).
Glutamate can be derived from glutamine, the most abundant 
amino acid in the body. Glutamine transports nitrogen for purine, 
pyrimidine, and fatty acid biosynthesis and can serve as an agent 
to fuel the TCA cycle. Conversely, glutamine can be generated 
from glutamate by a via the glutamine-glutamate cycle (Bak et 
al., 2006). In summary, glutamate is transported to astrocytes 
where it is converted to glutamine by glutamine synthetase. The 
newly synthesized glutamine then arrives at presynaptic neurons 
where it is hydrolyzed to glutamate by glutaminase, packaged 
into synaptic vesicles and released into the synaptic cleft during 
neurotransmission. The phrase “glutamine addiction” is used to 
describe cancer cells’ exorbitant consumption of glutamine as an 
energy source and it has been posited that glutamine may be a 
key marker for glioma progression (Ekici et al., 2020; Márquez 
et al., 2017; Wise and Thompson, 2010).

Additional Metabolites
Advancements in metabolomics have directed attention at other 
metabolites and LMWMs that can serve as glioma biomarkers 
and therapeutic targets, e.g. proline, arginine, methionine, 
kynurenate, and tryptophan. Proline is oxidized to glutamate in 
the mitochondria and has been linked to glutamate metabolism 
in GBM and cell proliferation (Cappelletti et al., 2018). In a 
recent systematic review, Sawicka et al. found proline to be a 
prognostic factor and a signal of malignancy (Sawicka et al., 
2022).

There are also GBM studies that indicate theprognostic 
potential of arginine, methionine, kynurenate, and kynurenine 
(Palanichamy et al., 2016; Shen et al., 2018). Kynurenine is a 
metabolite of tryptophan and is involved in immune evasion in 
GBM and thus tumor progression and poor prognosis. Overall, 
metabolomic studies have illuminated how metabolites show 
promise to be reliable prognosticators (Erb et al., 2008).

Lipids
Though lipidomics is an individual area of study dedicated 
to identifying and understanding cellular lipids and their 
pathways, it is worthwhile to discuss key alterations that overlap 
with metabolomics. Lipids serve as significant infrastructure 
components across cells and energy sources. For various cancer 
types, critical lipid metabolism regulators including sterol 
regulatory element-binding proteins (SREBPs), acetyl-CoA 
carboxylase, fatty acid synthase, and stearoyl-CoA desaturase 
are up-regulated and extensively covered in another review 
(Cheng et al., 2018). In glioblastomas, key lipid components 
that induce cancerous growth and spread include SREBP, sterol-
O-acyltransfersase (SOAT) and lipid droplets (LDs) (Geng 
et al., 2016; Yuan et al., 2021). SOAT converts endoplasmic 
reticulum cholesterol to cholesterol esters (CE) and sequesters 
CE into LDs to prevent over accumulation of cholesterol and 
lipotoxicity. Inhibition of SOAT in xenograft models has been 
shown to inhibit SREBP and thereby reduce GBM growth (Geng 
et al., 2016). A separate study with a focus on LDs has shown 
their role in lipid metabolism exploitation by glial and GBM 
cells (Yuan et al., 2021).
Not only has lipogenesis been underscored as a method of GBM 
progression, but acyl carnitines presence in GBM suggests 
upregulation of fatty oxidation for GB cellular respiration and 
proliferation (Lin et al., 2017). In IDH1-mt gliomas, lower levels 
of fatty acyl chains, triglycerides and sphingolipids are posited 
to be due to low acyl-CoA synthetase 1which has conferred 
better survival outcomes (Zhou et al., 2019).

Treatment
Standard of care treatment for gliomas typically consists of 
surgical resection and adjuvant chemotherapy and radiotherapy 
(Stupp et al., 2005), which can lead to treatment-related glioma 
hypermutation. However, hypermutation has been found 
highest in early tumorigenesis (Barthel et al., 2019). Recurrent 
IDH-wt GBM samples from patients who had received 
chemoradiotherapy and temozolomide (TMZ) were more likely 
to contain DNA methylation genes, mutations in DNA damage 
response genes and hypermutated phenotypes due to mutations 
in mismatch repair genes (Draaisma et al., 2020). These 
findings further emphasize the necessity of targeted therapeutic 
approaches for gliomas.
Experimental therapeutic interventions for GBM may involve 
a combinatorial approach. One such experimental combination 
approach is fluoxetine (Prozac) and TMZ. TMZ is an alkylating 
agent which has long been used as a chemotherapeutic agent to 
treat high grade gliomas due to its ability to methylate guanine 
at the O6 position which reduces DNA repair capabilities 
and ultimately induces cell apoptosis (Friedman et al., 2000). 
Fluoxetine is a SSRI antidepressant capable of selectively 
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inhibiting sphingomyelin phosphodiesterase 1 (SMPD1) and, 
when combined with TMZ, is reported to reduce tumors in 
murine models and increase survival in GBM patients (Bi et al., 
2021). 
Immunotherapy has emerged as an attractive treatment route, 
but its challenges are mired in the complexities of brain tumor 
metabolism in the tumor microenvironment (TME) (Guerra et 
al., 2020) and CNS anatomy (Engelhardt et al., 2017). Current 
immunotherapy trials exploring immune checkpoint inhibitors, 
vaccine therapies, viral introduction to various CNS neoplastic 
cell lines, and multimodal approaches have had mixed results 
(Mende et al., 2021).
Overexpression of the G-protein coupled receptor CCR5 across 
multiple cancer types including GBM has become a niche of 
neurooncological studies that examine therapeutic targets of this 
receptor (Lah Turnšek et al., 2021). CCR5 has been implicated in 
GBM stem cell genesis, invasion, and spread. Kranjc et al. offers 
an extensive review of the various mechanisms and components 
at play between CCR5 and one of its ligands, chemokine ligand 
5 (CCL5) in GBM (Kranjc et al., 2019). 
Selective HK2 inhibition has been interrogated as another 
metabolic target for GBM treatment (Agnihotri et al., 2019). 
In-vivo chemoradiotherapy studies have shown HK knock out 
as a promising target (Vartanian et al., 2016) and antifungals 
ketoconazole and posaconazole have exhibited reduced tumor 
metabolism and expansion in-vitro, offering evidence for their 
consideration in clinical trials (Agnihotri et al., 2019).
Natural products derived from vegetables, fruits, spices, and 
herbs have also been a source of interest for GBM as they are 
capable of influencing GBM cell cycles, apoptosis, angiogenesis, 
epigenetic alterations, and reducing therapeutic resistance (Abbas 
et al., 2020). Flavonoids are naturally present in vegetables 
and fruits, and the flavonoids apigenin, epigallocatechin, and 
genistein were observed to selectively activate apoptosis in 
GBM cells (Das et al., 2010). Quercetin, another extensively 
studied natural flavonoid in vegetables and fruits including 
broccoli, red onions, apples, red grapes, cherries, and berries 
has been found to induce apoptosis in GBM cells and increase 
chemoradiotherapy effects (Kim et al., 2021; Pozsgai et al., 
2013). Amongst polyphenols, resveratrol, a natural polyphenol 
in mulberries, grapes, and peanuts, increased apoptosis and 
reversed TMZ resistance in T98G glioblastoma cells, suggesting 
that certain natural products can serve as a beneficial adjunctive 
therapy (Huang et al., 2012). A recent review by Abbas et al. 
covers their molecular mechanisms in greater detail (Abbas et 
al., 2020). 

Resistance
While targeted therapeutics approaches offer benefit to cancer 
patients outside the CNS based on their tumor’s molecular 
characteristics, over two decades of data demonstrate that this 
overall approach suffers from several weaknesses in high grade 
glioma treatment. Most prominent among these is the propensity 
of subpopulations of heterogeneous tumor cells to subvert 
drugs that act via apoptosis, by far the most prevalent cell death 
mechanism engaged by currently employed therapeutic agents, 
leading to therapeutic resistance and poor patient outcome.
Two models theorize cancer cell heterogeneity and its 
consequences: clonal evolution and the cancer stem cell (CSC) 

hypothesis. The clonal evolution theory, proposed by Peter 
Nowell in 1976, suggests that the accumulation of cellular 
mutations via heritable and epigenetic changes generate clonal 
outgrowths that thrive in response to microenvironmental 
selection pressures (Nowell, 1976). In effect, the model 
resembles the Darwinian model of evolution. The application of 
this theory in GBM cells has been observed in a study by Wang 
et al., who found increased mutation in recurrent GBM that had 
been treated with standard therapy including TMZ, indicating 
that resistant clones survive and hypermutatewhen confronted 
with drug-induced pressure (Yuzawa et al., 2016).
The cancer stem cell (CSC) hypothesis first manifested in brain 
tumors in 2004, when Singh et al. found a subset of GBM stem 
cells (GSC) that were capable of initiating tumor growth via 
CD133+ protein surface markers (Singh et al., 2004). GSCs 
have since been observed to possess chemoresistance (Eramo et 
al., 2006) and human mesenchymal stem cells (hMSCs) inside 
glioma-associated hMSCs have been linked to dismal outcomes 
(Shahar et al., 2017). Chemoresistance is in part due to the 
increased expression of tumor growth factors such as VEGF and 
stromal derived factor 1 (SDF-1) which promote angiogenesis 
and appear to provide resistance against standard therapies such 
as radiation (Folkins et al., 2009; Harmey and Bouchier-Hayes, 
2002). CSCs are also able to prevent cytotoxicity through high 
drug efflux by ATP-binding cassette (ABC) transporters, which 
are ATP-dependent membrane-bound proteins (Vasiliou et al., 
2009). Overexpression of ABCB1, ABCB5, and ABCA13 (three 
ABC transporters) were found to increase TMZ resistance (Chou 
et al., 2012; Dréan et al., 2018; Lee et al., 2020).
In addition to clonal evolution and stem cell capacity to shape 
shift and evade cell death with TMZ, another response from 
GBM cells upon TMZ administration is over expression of the 
DNA repair protein O-6-methylguanine-DNA methyltransferase 
(MGMT), which confers resistance and shorter survival (Perry 
et al., 2017). Therapeutic resistance has also been linked to 
microRNA (miRNA) dysregulation. Shi et al. found that U87MG 
GBM cells developed resistance to TMZ by upregulation of 
miRNA-21 which decreased Bax/Bcl-2 and caspase-3 activity 
(Shi et al., 2010).

Conclusion
Despite scientific advancements made in cancer research, high 
grade gliomas remain enigmatic. Just as the discovery of IDH 
mutation sparked great interest in cancer metabolism in the 
neuro-oncology field, we have the opportunity to take it to 
the next step using metabolomics to help understand disease 
progression and changes in cancer profiles across all cancer 
types (Crooks et al., 2021; Kwon et al., 2015). Our summary of 
metabolomic studies that pertain to high grade gliomas, spanning 
metabolic pathways, metabolites, and therapeutic interventions 
underscores the significance of metabolomics as a way to better 
understand and treat high grade gliomas. 
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