Research Article: The role of neutrophils and by macrophages in the pathogenesis of inflammatory and post inflammatory episodes: Major tissue damage may be inflicted by a synergy among their toxic pro inflammatory agents

Author Name: Isaac Ginsburg and Mark Feldman

Corresponding Author: Isaac Ginsburg

Citation: Isaac Ginsburg
The role of neutrophils and by macrophages in the pathogenesis of inflammatory and post inflammatory episodes: Major tissue damage may be inflicted by a synergy among their toxic pro inflammatory agents

Received Date: 18th August 2021
Published Date: 30th August 2021

Copyrights: Isaac Ginsburg
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
In his manuscript we summarize the role played by the variety of pro inflammatory agents generated by neutrophils and by macrophages and how these cells may act in synergy to injure human and tissues in various inflammatory and in post inflammatory conditions.

Screening the vast published literature, we found that most of papers published on inflammation, tend to stress only the role played by a very few pro inflammatory agents as key agents in inflammation. This is unreasonable to try to understand how leukocytes kill microbial cells and injure mammalian cells in various medical conditions. This is since the PMNs and macrophages produce numerous inflammatory agents. 1-15

The role of neutrophils in cell damage in inflammation
Upon activation, both neutrophils and macrophages were shown to deliver long nets (traps) rich in a nucleosome and in a series of highly cationic polyelectrolytes. These include mainly: Histone, LL37, defensins, elastase, catelicidin. These cationic agents are mainly directed to kill microorganisms 16,17 and also aid in their disintegration bacteriolysis – see below 18-20

To better understand the role of neutrophils in cell damage, we may first study the histology and images of inflamed tissues analysing for the enzyme myeloperoxidase which is a typical marker of neutrophiles. 21-23

Not having a single toxic identified virulent agent such as seen in tetanus and diphtheria, which may explain the toxic effects in infections and in inflammatory and post inflammatory episodes, we need to test combinations and permutations among a large variety of key agents and to determine those minimal combinations required to injure, kill and also to disintegrate microorganisms by the bacteriolysis system.

To appreciate the richness of agents produced by neutrophiles we hereby offer the reader a commulative list of pro inflammatory agents generated neutrophiles, many of which, may act in synergy to injure cells in microbial infections and in post inflammatory sequelae. May be the slogan: “If you cannot beat them alone, join them”. is very appropriate when dealing with multifactorial agents.

A List of Agents produced by activated neutrophiles
Meloperoxidase: An excellent marker used if one analyzes histology of organs affected by inflammation rich in neutrophiles: beta-glucuronidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase, and acid phosphatase, Acid glycosidase, Plasminogen activator, Collagenase, Elastase, Lysozyme, cartilage mucopolysaccharide-degrading neutral protease from human leukocytes, Oxidants, nitrogen species nitric acid, Superoxide, Hydrogen peroxide, Gelatinase, PLA2 and arachidonic acid release, Lysophosphatides, Metallo proteinase, HOCl, (TNF), IL-1, IL-6, IL-8, and IL-12

Oncostatin M, transforming growth factor, TNF, tumor necrosis factor, interferon, LL37, interleukin-, IL-Ira, IL-I receptor antagonisteukemia inhibitory factor, MCP-1, monocyte, chemoattractant protein-1, MIF, macrophage migration inhibitory factor
Macrophage / granulocyte- colony stimulating factor
Macrophage inflammatory protein, oncostatin M, transforming growth factor, tumor necrosis factor

A large group cytokines are involved in chemotaxis. Some cytokines can upregulate the production of other cytokines by macrophages (IL-3, GM-CSF, IFNγ) while others can inhibit it (IL-4, IL-10, IL-13, TGFβ). IL-1, IL-1ra, IL-6, IL-8, IL-10, IL-12, TNFα, IFNα, IFNγ, MCP-1, MCP-3, MIF, M-CSF, G-CSF, GM-CSF, MIP-1, MIP-2, LIF, OSM, TGFβ).

The role of bacteriolysis in cell damage seen in inflammation
Inflammatory episodes, may be associated with microbial infections in addition to their exo toxins and endotoxins. Exo toxins bacteria may also undergo bacteriolysis due to the activation by cationic lysozyme or by other poly cations. This is due to the activation of endogenous autolytic wall enzyme (muramidase releasing non biodegradable cell wall components such as lipoteichoic acid and peptidoglycan). Such cell fragments may be stored by macrophages causing relapsing chronic arthritis. This may be demonstrated by measuring muramic acid a part of the cell wall.

The role played by reactive oxygen species and proteinases in cell damage
Activated neutrofies, can induce the activation of NADPH oxidase generating superoxide HOCl and additional on reactive oxygen species highly toxic to cells. Neutrofies also release phospholipase A and lysophosphatides, agents capable of puncturing holes in cell membranes. Neutrofies and macrophages also elaborate proteolytic enzymes which can act in concert with oxidants to kill cells. It was also suggested that oxidized proteins are rapidly degraded by oproteinases.

Can anionic heparin ameliorate cell damage in inflammation?
A recent study suggested that the penetration of the corona virus into lung cells could be inhibited by the administration of anionic heparin. This anionic drug can neutralize those poly cations generated by netosis and responsible for the uptake of the negatively charged lung cells. We suggested to treat corona patients heparin post inflammatory processes.

The effects of Traditional herbal preparation Padma
Hepaten on inflammation
Tibatan medicine very famous for treatment of various human inflammatory disorders (see the huge literature covered by Google).

Drugs suggested to counteract agents secreted by activated neutrofies and macrophages
These were summarized in a publication from 1999. However every agent which can retard migration of neutrofies and inhibit tissue damage can be used clinically. These include: steroids, copaxone Cyclosporine. Methotrexate, Imuran (azathioprine) Plaquesn (hydroxychloroquine), CellCept (mycophenolic acid) Cytoxan, Neosar (cyclophosphamide) and agents other agents which retard chemotaxis by the cytokines storms.

Macrophages in Inflammation and Tissue Damage
The past several years have seen evidences demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. Similarly to neutrofies, macrophage can also have the capacity to extend long nets rich in cationic peptides. Macrophages can also extend an array of mediators with cytotoxic, pro- and anti-inflammatory properties which can function to fight infections, limit tissue injury and promote wound healing. (see below a cumulative list of agents derived from Macrophages).

Like neutrofies, the main function of macrophages is to endocytose foreign agents that enter the body. These include microbes and other particulate matter. In addition, they eliminate apoptotic cells and recycle nutrients by digesting waste products from tissues. Macrophages are hence essential not only for immunity, but also for development and tissue homeostasis.

Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair. Macrophages have the ability to store large amounts of undegraded agents obtained following baceriolysis occurring following bacteiolysis and to cause a Perputaing chronic arthritis. The activity of macrophages can be increased by cytokines secreted by helper T cells, with interferon gamma (IFN-γ) being one of the most potent macrophage activators. In addition, these multifaceted cells are also capable of chemotaxis, namely the process of being attracted and displaced to a particular location by specific molecules.

A list of Agents released by Macrophages:
- Beta-glucuronidase, N-acetyl-beta-glucosaminidase, alpha-mannosidase, a acid phosphatase.
- Acid glycosidases
- Plasminogen activator
- Collagenase Cationic
- Elastase Cationic
- Lysozyme cationic
- LL37 cationic
- Defensin Cationic
- Catelicidic Cationic
- Gelatinase, ...Cationic
- Myeloperoxidase Cationic
- Defensins Cationic
- Bactericidal permeability increasing agent Cationic
- Cartilage muco polysaccharide-degrading neutral protease
- Superoxide
- Nitrogen species, nitric acid, peroxinitrate
- Hydrogen peroxide
- PLA2 and arichdonic acid release
- Lysophosphatides
- Metallo proteinases
- HOCI
- Macrophage / granulocyte- colony stimulating factor
- Macrophage inflammatory protein
- Oncostatin M
- Transforming growth factor
- Tumor necrosis factor
- Interferon
- Interleukin-Receptor antagonist
- Leukemia inhibitory factor
- Monocyte chemo attractant protein-
Macrophage / granulocyte- colony stimulating factor
Macrophage inflammatory protein
Oncostatin M
Transforming growth factor (TNF), IL-1, IL-6, IL-8, and IL-12
IL-1, IL-1α, IL-6, IL-8, IL-10, IL-12, TNFα, IFNα, IFNγ, MCP-1, MCP-3, MIF, M-CSF, G-CSF, GM-CSF, MIP-1, MIP-2, LIF, OSM, TGFβ). Some cytokines can also regulate the production of other cytokines by macrophages (IL-3, GM-CSF, IFNγ) while others can inhibit it (IL-4, IL-10, IL-13, TGFβ).

Aftermath and Conclusions
Taken together, it is suggested that pro-inflammatory toxic agents released by PMNs and by macrophages can act in concert with agents released by dead cells to markedly enhance tissue as seen in severe inflammation. In addition, agents released from bacteria following bacteriolysis induced by cationic peptides and by anti biotics can be stored for long periods in macrophages to perpetuate chronic arthritis. Various agents released by dead cells include: toxic nuclear cationic enzymes “danger signals” that alert the host to cell death. Several of these molecules can be recognized by cell receptors that can stimulate the generation of pro inflammatory mediators. Additional molecules released by dead cells, can stimulate the generation of mediators also from extracellular sources. The mediators then orchestrate the inflammatory response, causing generation of various vascular and cellular components. Dead cells also release danger signals that activate dendritic cells and promote the generation of immune responses to antigens in and around the dying cells. The synergism concept of cell damage demands the collaboration among various groups of major agents such as: oxidants, HOCl, hydroxyl radical, cationic histines delivered by netosis, reactive nitrogen species such as peroxynitrate and membrane puncturing lysocephosphatidate. In many cases anionic heparins may block the toxicity of cationic agents released from PMN and macrophage nets. Heparin may also block endocytosis by crown and hepatitis c viruses by human tissues. Cationic agents can also opsonize immune complexes bacteria, fungal cells for endocytosis by various body cells as seen in many auto immune disorders. Recruitment of leukocytes to inflamed sites is controlled by various cytokine storm Tables A and B summarize a a list of agents generated by PMNs and by Macrophages.

References
1 Neutrophils in liver diseases: pathogenesis and therapeutic targets
 • Kai Liu,
 • Fu-Sheng Wang &
 • Ruonan Xu
Cellular & Molecular Immunology volume 18, pages38–44 (2021)
2 Front I Immunol. 2021; 12: 625472.3 The Roles of Neutrophils in the Pathogenesis of Liver Diseases Jiaojiao Tang, I.Zijian Yan,2.3 Oiyu Feng, I.2,4 Lexing Yu, *, and Hongyang Wang
3 Kaplan, M. J. Role of neutrophils in systemic autoimmune diseases. Arthritis research & therapy, 2013.;1; 219……...
4 Polycations and polyanions in SARS-CoV-2 infection Medical Hypothesis Medical Hypothesis 2021 Ginsburg I and Fibach E
7 Isaac Ginsburg Cationic polyelectrolytes: a new look at their possible roles as opsonins, as stimulators of respiratory burst in leukocytes, in bacteriolysis, and as modulators of immune-complex diseases (a review hypothesis). Inflammation,1987 11; 489-515
8 Isaac Ginsburg, Michael N. Sela, Abraham Morag, Zohar Ra Vid, 3 Zvia Duchan, Mina Ferne, 4 Sonia Rabinowitz-Bergner, 4 Peter Page Thomas, 5 Philip Davies, John Niccols, John Humes, And Robert Bonney
 The Role Of Leukocyte Factors And Cationic Polyelectrolytes In Phagocytosis Of Group A Streptococci And Candida albicansBy Neutrophils, Macrophages, Fibroblasts and Epithelial Cells: Inflammation 1981,5.
18 Wecke, J., Lahav, M., Ginsburg, I., &Giesbrecht, P. (.). Cell wall degradation of Staphylococcus aureus by lysozyme. 1982 Archives of microbiology, 1982131(2), 116-123
23 Halliwell B. Free Radicals in Biology and Medicine Oxford University press 2015
24 April 1989
• Lysophosphatides enhance superoxide responses of stimulated human neutrophils
• Isaac Ginsburg,
• Peter A. Ward &
• James Varani
34 Ginsburg Isaac Multi-drug strategies are necessary to inhibit the synergistic mechanism causing tissue damage and organ failure in post infectious sequelae InflammoPharmacology volume 7, pages207–217 (1999)