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Abstract:
It is interesting to note that the expected value of the log likelihood function is 
entropy. This note shows that there is an exact relationship between the mixture 
log likelihood function (ln LM) and the sum of the mixing distribution entropy (HM) 
and the mixture density entropy (HD). Ln LM  is seen as a function exactly of four 
Shannon entropies, each a unique measure of uncertainty. 
This method, known as mixtures of linear models (MLM), is a form of empirical 
Bayes which uses a non-informative uniform prior and generates both confidence 
intervals and p-values which clinicians and regulatory agencies can use to evaluate 
scientific evidence.
An example based on allergic rhinitis symptoms scores are given and show how 
easy it is to assess the fit of the model and evaluate the results of the trial.
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Introduction:
Inference when conducting Bayesian analyses is derived from the posterior probability 
which is the result of two precursors: a prior probability and a likelihood function. The 
likelihood function is derived from the statistical modeling of the observed data, and 
inference derived by using the Bayes’ theorem. In essence, Bayes theorem or factor 
can be written as the product of the likelihood and the prior probability (posterior 
probability = likelihood * prior probability). This relationship allows us to update 
our earlier theory (hypothesis) with a subsequent theory based on the observed data. 
(Faulkenberry, 2018). 
  A consequence of using evidence-based methods (which combines clinical expertise, 
patient’s values and best available scientific evidence) to assist in making treatment 
decisions for their patients by clinicians is their reliance on p-values when evaluating 
scientific evidence, (Masic et al, 2008). A key feature of evidence based medicine 
is meta-analyses and systematic literature reviews. However, often the correct 
interpretation of the p-value eludes those most interested in evaluating the scientific 
evidence in front of them. The suggestion has been to use the Bayesian inference 
method to draw inferences, (Cohen, 2011). Indeed, the push within the statistical 
community has been to push aside classical methods that place heavy emphasis on 
using p-values to alternative methods that have less reliance on the use of p-value, 
such as the Bayesian inference, (Wagenmakers, 2007).  
There are some considerations to think about prior to shifting away from the standard 
century old method. These considerations include among others:  
• The selection of priors; and
• The incorporation of prior distributions into meta-analytic framework
Perhaps a method that incorporates the best of both the standard approaches to 
hypothesis testing and the rigor of Bayesian framework can be used to overcome 
these limitations, and enables an easy interpretation of scientific interpretation by 
clinicians and regulatory agencies.  
It is interesting to note that the expected value of the log likelihood function is entropy. 
This note shows that there is an exact relationship between the mixture log likelihood 
function (ln LM) and the sum of the mixing distribution entropy (HM) and the mixture 
density entropy (HD). Ln LM is seen as a function exactly of four Shannon entropies, 
each a unique measure of uncertainty. 
This method, known as mixtures of linear models (MLM), is a form of empirical 
Bayes which uses a non-informative uniform prior and generates both confidence 
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intervals and p-values which clinicians and regulatory agencies 
can use to evaluate scientific evidence. 

Method
Fisher information is the limiting form of several different 
measures of entropy & has been referred to as a “mother” 
information by Frieden (1998). Physical entropy is the volume of 
the region of the energy of the system, (Einstein 1904). Molecules 
that collide in a non-equilibrium system produce entropy.  
Statistical entropy is related to the volume of the likelihood 
function parameter space, where the likelihood function is the 
energy of the data generating system. This is demonstrated by 
the product of the date densities. Fisher information is related 
to the surface (Cover and Thomas, 1992) and is the limit of 
entropy.  Shannon entropy (statistical information theory)  for a 
discrete distribution with probabilities p1,p2,...,pk is

     (1)

A unique measure of uncertainty for a proof, see Applebaum 
(1996). Entropy for the mixing distribution of a MLM as derived 
by Orlando and Allen (2001) is

where P (j|i) is the Bayes posterior conditional probability of 
the ithobservation in the jth component and ρˆj is the estimated 
mixture proportion for the jthcomponent. HM can be expressed 
as

      (2)

where HB is the Shannon entropy for the population, HWC for the 
interaction, and ln n for the correction, each a unique measure of 
uncertainty. HW is the average within component entropy. In this 
note we show that an exact relationship exists between the log 
likelihood function for a MLM (ln LM) and entropy.

LIKELIHOOD AND ENTROPY
The exact relationship between the likelihood function and 
entropy for a uni-component probability distribution has been 
established (see, e.g. Kapur and Kesavan (1992); Lavenda 
(1991)). For the unicomponent normal density we define

      (3)

the entropy for the normal density,

      (4)

where σˆ2 is the estimated residual mean square (Kapur and 
Kapur 1990); (Orlando and Allen 2000).

The main result of this note is the following theorem:

     (5)

where HD is the mixture density entropy,
Proof: See the Appendix.

Substituting for HM from Equation 2, we have that the average 
-ln LM is a function of four unique measures of uncertainty and 
is itself a unique and complete measure of information. The total 
entropy is the expected value of -ln LM and represents the total 
volume of the parameter space region of LM. Equation 5 holds 
only at the solution for max -ln LM where the difference in -ln LM 
for two hypotheses is better approximated asymptotically by χ2.

For a mixture of normal densities we have

         (6)

The following example provides an illustration of a normal MLM 
application and the computing of -2ln LM from the Equation 6 
formula.
Example 1. Figure 1 shows the treatment cumulative distribution 
functions (cdf) for allergic rhinitis total symptom scores from an 
actual double-blind clinical trial with 149 patients comparing 
three doses of a test drug to a positive reference and placebo. The 
crossing of the cdf’s, in particular the placebo cdf at the median, 
indicates a mixed response (Oja 1981). Also, there is marked 
non-normality and unequal treatment variances. Consequently, 
the uni-component model analysis results do not yield suitable 
residuals. 
As an alternative, we use a two-component normal mixture of 
linear models (MLM) with treatment and site as main effects. 
MLM is a proprietary software program that has been validated 
based on the comparison of the results obtained from the 
algebraic expressions with the algorithm computations. Further, 
the Assay validity of the study was established by the p-value of 
0.06 for the established reference drug, compared to placebo, as 
computed by the MLM software. 
The -2ln LM value as computed by the MLM software using a 
differential evolution search algorithm is 1056.19, where -2ln 
LM is computed as
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of 28.37 (30.2%). For the treatment only model, we have
−2 ln LM = 93.918 + 554.706 + 273.844 + 149= 1071.47
This is due primarily to a decrease in HW from 0.471 to 0.114 
as a consequence of a small estimated variance of 0.189 for 
the smaller component, indicating a spurious local maximizer 
solution. An entropy-penalized log likelihood in the treatment 

and site model was used increasing -2ln LM to 1048.38 and 
2nHM to 102.69 with a ten-fold increase in the smaller variance 
estimate. The increase in -2ln LM of 23.09 is compared to the 
critical value of 10.31 for χ2 at the 5% level, supporting the 
inclusion of site in the model, data given in Table 1, below.

The Equation 6 formula also gives 1056.19,
−2 ln LM = 65.550 + 567.796 + 273.844 + 149= 1056.19.
An analysis of mixtures (ANOMX) comparison of this model with the treatment only model shows an increase in -2ln LM of 15.28 
for eight additional parameters, but a decrease in 2nHM

The Equation 6 formula also gives 1056.19, 

−2 ln LM = 65.550 + 567.796 + 273.844 + 149= 1056.19. 

An analysis of mixtures (ANOMX) comparison of this model with the treatment only model shows an 

increase in -2ln LM of 15.28 for eight additional parameters, but a decrease in 2nHM 

 

of 28.37 (30.2%). For the treatment only model, we have 

−2 ln LM = 93.918 + 554.706 + 273.844 + 149= 1071.47 

This is due primarily to a decrease in HW from 0.471 to 0.114 as a consequence of a small estimated 

variance of 0.189 for the smaller component, indicating a spurious local maximizer solution. An 

entropy-penalized log likelihood in the treatment and site model was used increasing -2ln LM to 1048.38 

and 2nHM to 102.69 with a ten-fold increase in the smaller variance estimate. The increase in -2ln LM of 

23.09 is compared to the critical value of 10.31 for χ2 at the 5% level, supporting the inclusion of site in 

the model, data given in Table 1, below. 

Table 1: TSS Data Pooling the Two Normal Subpopulations and Resulting Treatment Comparisons of the Means 

Treatment Placebo (P) High (H) Middle (M) Reference (R) Low (L) 

N 30 30 30 30 29 

Mean 4.6 6.9 8.7 9.5 9.7 

Comparison R-P L-P M-P   

Mean (SE) 4.9 (2.6 ) 5.1 (2.6) 4.0 (2.5)   

95% CI -0.196-9.996 0.004-10.196 -0.90-8.9   

P-value 0.06 0.05 0.11   

 

 

CONCLUSION 

We have shown that there is an exact relationship between entropy and the log mixture likelihood 

function,and that this relationship allows us to derive confidence intervals and p-values that can be 

interpreted easily.  Entropy is a valuable tool for finding the optimal solution and supporting the use of 

mixture models for inference. 
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Conclusion
We have shown that there is an exact relationship between 
entropy and the log mixture likelihood function, and that 
this relationship allows us to derive confidence intervals and 
p-values that can be interpreted easily.  Entropy is a valuable 
tool for finding the optimal solution and supporting the use of 
mixture models for inference.

Appendix
Proof of Theorem 1. We define for any mixture of linear models 
the basic probability unit, the within cell probability, as

     (7)

where fj(yi) is the probability ordinate for the ith observation in 
the jth component and Li is the likelihood for the ith observation, 
the marginal density function. The  fj(yi) and Li are evaluated at 
the ML estimates. The within cell or interaction entropy is

      (8)

From Equation 2, HWC can be expressed as

     (9)

From Equations 8 and 9 we have

where HD is the mixture density entropy. We then have that 
−E(ln LM) = HM + HD and is estimated by the average of the 
negative log likelihood function.
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